In-Time: Multimodal Real-Time Travel and Traffic Information to Improve Modal Choice and Energy Consumption in European Cities

Marco Boero
Softeco Sismat Srl
Italy
Motivation, problem area

• Increased traffic in Europe’s cities has resulted in
 – chronic congestion (delays, pollution)
 – economic loss of nearly €100 billion/year (about 2% of EU's GDP)

• Urban traffic responsible for
 – 40% of CO₂ emissions and
 – 70% of emissions of other pollutants arising from road transport

Main policy objectives for transport and travel

- cleaner,
- more efficient, including energy efficiency
- safer and more secure

Motivation, problem area

Multi-modal Travel and Traffic Information Services
- **Reliability** (up to date info about delays, service changes, …)
- **Comfort** (short transit, improved waiting time…)

→ positive impact on travel behaviour: **co-modal choices**
→ **pan-European** multimodal Real-Time Travel Information

→ **ITS Directive**
→ EU-wide multimodal travel information services
→ EU-wide real-time traffic information services

http://www.bayerninfo.de
http://www.netzwelt.de/images/articles/handy-navigation_1176551258.jpg
Travel & Traffic Information Services

Motivation, problem area

- Local content/service providers
- Content/service integrators
- Travel Information Service Providers (TISPs)
- End Users

Other Data Sources
Motorway Operator
Road Operator
Public Transport Operator
Urban Traffic Management Operator
Parking Operator
RDSS Regional Data / Service Server (site level)

TISP

TTIS by “global players”: a current trend, e.g.
- Google
- Tom Tom
- ...

TTIS on smartphones: a growing market (Frost & Sullivan, 2011)
- 280.000 users in Europe (DE, FR, ES, IT, NL, UK)
- 2.2 millions by 2017
Multimodal Travel & Traffic Information Services: **challenges**

- Need to provide **open data access**
- Different **local technologies, data formats, interfaces**
- **Specific B2B agreements** (technical, operational)

- **Cross-domain** contents/services:
 - Different EU **ITS standards** available (in use, evolving)
 - no “**fit for all**” model/interface available
 - data model “**harmonisation**” approach needed
 - see e.g. **ISO TR25100** …
Motivation, problem area

Multimodal Travel & Traffic Information Services: **scenario**

- **A**: Planning & pre-trip information
- **B**: On-trip navigation
- **C**: Public Transport Journey Description
- **D**: On-trip navigation

- **End User**
 - Desired destination

- **TTIS provider**
 - Route planning (car, walk)
 - On-trip navigation

- **Local Systems**
 - PT Journey Planning
 - PT info (static, dynamic)
 - Parking info (static, dynamic)
 - Traffic events
The In-Time project

In-Time: Intelligent & Efficient Travel Management for European Cities

- CIP-ICT PSP-2008-2, *Type B Pilot*
- 22 Partners, co-ordinated by AustriaTech
- Budget: 4.58 M€, of which 2.29 M€ funded by the EU
- Kick-off 1st April 2009, duration 3 years
- 6 EU cities: Brno, Bucharest, Florence, Munich, Oslo, Vienna

www.in-time-project.eu
Research objectives

In-Time: Intelligent & Efficient Travel Management for European Cities

• A general service infrastructure providing:
 o **harmonised access** to data and services
 ⇒ EU ITS standards
 o bundling all transport info in a city
 o general infrastructure services
 (e.g. catalogues, registries)
 o **no additional logic**
 ⇒ data/services remain with Local Systems and/or TISPs
 o **Pilot in 6 EU cities**
 ⇒ Vienna, Munich, Oslo, Florence, Bucharest, Brno
Enabling **interoperability** across **sites** and content/service **sources**
The In-Time Infrastructure: a Service Oriented Architecture (SOA) for harmonised access to TTI Services

- **B2B Commonly Agreed Interface** (B2B CAI) to access local TTISs
- General **infrastructure services** (Registry, Catalogue)
- 3 standard domains: (1) **SOA** (W3C), (2) **ITS**, (3) **Geospatial** data (OGC)

RTTI support Services

- **Data Services**
- **Routing Services**
- **Map Services**
- **Message Services**
- **Location Services**
- **Registry Service**
- **Catalogue Service**

In-Time End User Services Taxonomy

Mandatory Core Services
- static road traffic information
- dynamic road traffic information
- static parking information
- static public transport information
- walking information

Core Services
- dynamic road traffic information (secondary roads)
- dynamic public transport information
- dynamic public transport journey routing
- dynamic parking information
- enhanced walking planning
- dynamic cycling planning

Add-on Services
- dynamic freight information
- dynamic POI information
- dynamic traffic event information
- dynamic weather information
- static and dynamic flight information

CAI Services Taxonomy
The In-Time B2B Interface (CAI): specifications

1. **In-Time Data Model**
 - defined harmonizing several international and European standards
 - DATEX 2, TPEG, IFOPT, SIRI, JourneyWeb, OpenLS, ISO 19000 / OGC standards, ...
 - along the lines of the ISO 19100 Geographic Information Standards
 - encoded in Unified Modeling Language (UML)

2. **In-Time Service Model**
 - uses, wherever possible, existing service standards especially from OGC (WMS/WFS) and OASIS
 - automatically translated into WSDL documents describing the interfaces

3. **Exchange format** for In-Time data
 - defined by an Application Schema of Geography Markup Language (GML).
The In-Time B2B Interface (CAI): implementation

- **Core component:** Data Service
 - Data transformation from local data/service format to In-Time harmonised data model
- **Built on top of existing systems**
 - No need of internal modification of existing services
- **Deployment flexibility**
 - wrt service distribution → policy/service/business requirements
- **Modular and scalable**
 - Data services can be added in stages
- **Platform independent**
 - open standards, neutral wrt implementation technologies
Major Outcomes/Results

In-Time deployment in 6 European pilot cities

- **B2B CAI** (6 instantiations; see online data/services @ www6.softeco.it/Mixer)
- In-Time **Registry & Catalogue** (Tom Tom BV)
- 4 TISP **mobile apps**
Major Outcomes/Results

In-Time deployment in 6 European pilot cities: Florence

Local systems / contents

1. ATAF
 - AVM System

2. ATAF
 - BUSBSSOLA
 - Journey planner + POIs

3. Firenze Parcheggi
 - Traffic Events & Road works
 - Parking data

4. Tom Tom BV
 - Routing Service (car, walk)

In-Time B2B Services

- In-Time Data Adapter (Public Transport static and dynamic information)
- In-Time Service Adapter (PT Journey Planner + walking info)
- In-Time Data Adapter (Traffic Event Information)
- In-Time Data Adapter (static and dynamic Parking Information)
- In-Time Data Adapter (Routing Service car, walk)

In-Time B2C Services

- GeoSolutions App (Win Mobile)
- Telmap App (Symbian)
- Fluidtime App (iPhone)
- Softeco App (Android)
Conclusion and outlook

• In-Time **pilot demonstration** ongoing in the 6 cities
 – about 1000 users
 – running until March 2012
 – Follow-up project: **Co-Cities**

• In-Time is **open to new cities/regions/TISPs**
 – The **In-Time Follower Package**
 – www.in-time-project.eu

• In-Time enabled **mApps**
 – iPhone, Android mktplaces
Thank you!

Marco Boero
Softeco Sismat Srl
Research & Innovation Division
Email: marco.boero@softeco.it
www.softeco.it
www.research.softeco.it
www.in-time-project.eu