Holistic information + Smartphone = more sustainable travel practices?
The MyWay approach

Kate Pangbourne1, David Quesada2, José Fernández2, Michal Jakob3, Judith Masthoff1, Stefano Persi2 and Marco Boero4

1: Department of Computing Science, University of Aberdeen, Scotland, UK
2: ENIDE, Barcelona, Spain
3: Ceske Vysoke Uceni Technicke v Praze, Prague, Czech Republic
4: Softeco Sismat Srl, Genoa, Italy
• Introduction to MyWay
• Technological Approach
• Methodology
• Results
• Next Steps
• Impact
• Conclusions
Introduction to MyWay

• The vision is to contribute to reducing congestion and GHG emissions and improve local air quality
 • Improving efficiency of road journeys
 • Routing (e.g. avoiding congestion or disruption)
 • Less time cruising for parking
 • Making sustainable travel choices easier
 • Better interchange information and direction
 • Encouraging cycling and walking as integral part of multi-modal journeys
 • Encouraging park and ride
Technological Approach

- MyWay ‘meta-planning’ approach
 - Enables a better balance between public & private modes
 - Stimulates service cooperation and market development
 - Enhances personalisation
 - Fosters transformative technologies in smart mobility
- The MyWay platform is making significant technical advances in three main areas
 - Expressive representation framework for flexible mobility services
 - Mobility resource discovery and allocation algorithms
 - APIs and protocols for integrating resource allocation into journey planning
Conceptual Design Principles

- Open flexible design for integration with other services and systems
- A MyWay Open API interconnects all main parts and 3rd party systems
- Scalable application with flexible deployment model
- Loose-coupling of components to allow extension, adaptation and maintenance
- Meta-planner concept integrates and combines the detailed routes from sub-planners
- Collaborative design
- Compliance with relevant EU standards and existing standards in software engineering and ITS
• Three Living Labs for live testing and evaluation
• Three trial phases, with pilot and real users
• Used vivid usage scenarios presented as narratives to focus groups to validate proposed functionalities and gather/prioritise user requirements
• Pre-testing software interface through Expert Usability Evaluation using Neilson’s heuristics
• Subjective and objective validation of concept, technical functioning, usability and user acceptance
• Monitoring impact on mobility behaviour
| Living Labs |

<table>
<thead>
<tr>
<th>CATALONIA population</th>
<th>BERLIN population</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.75 MILLION</td>
<td>3.5 MILLION</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRIKALA population</th>
</tr>
</thead>
<tbody>
<tr>
<td>76.000</td>
</tr>
</tbody>
</table>
16 focus groups, > 140 participants across the three Living Labs

Target groups: students, commuters, and retired over 60s; convenience sample recruited via web advertisement and e-mail

14 scenarios, locally customised

Across all focus groups, it was clear multi-modal journeys need more support for key stress points:
- finding a parking place at an interchange
- reducing waiting times and providing ‘real time’ waiting times
- having reliable information during disruption.

Other popular features include:
- Map-based interfaces (some value including points of interest)
- Including weather information and integrating more modes
- Cost/prices and ability to book (but trust in paying via smartphone split participants)
Focus Group Results (2)

- Segmentation helped us to understand differences between the individual focus groups, particularly in relation to the relevance of different MyWay features to different types of user.

<table>
<thead>
<tr>
<th>Segment</th>
<th>Barcelona</th>
<th>Berlin</th>
<th>Trikala</th>
</tr>
</thead>
<tbody>
<tr>
<td>Devoted Driver</td>
<td>5</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Image Improver</td>
<td>4</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>Malcontented Motorist</td>
<td>16</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Active Aspirer</td>
<td>13</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>Practical Traveller</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Car Contemplator</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>PT Dependent</td>
<td>8</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Car-free Chooser</td>
<td>4</td>
<td>1</td>
<td>11</td>
</tr>
</tbody>
</table>
The Pre-Phase Living Lab is a pilot trial of the basic journey planning functionality with 36 pilot users and 13 real users.
Next Steps: Phase One Trial

| City Information | - Explore the map showing different city information such as points of interest, public transport stops, parking and bicycle sharing
| | - Search for an address with the autocomplete control. |
| Journey Planning | - Select an address as origin or destination using either autocomplete control or clicking on the map.
| | - Quick journey planning for immediate trips (only origin and destination).
| | - Custom journey planning allows:
| | - Selecting a departure time;
| | - Viewing recommended routes classified by: fastest, most ecological and most comfortable; and
| | - Viewing the full list of calculated routes.
| | - Explore the selected plans graphically with the itinerary, journey segments and modes presented the map.
| | - Detailed information for the steps of the selected route showing: departure time, distance, time, travel mode, origin and destination. |
| User Profiling | - User registration, login and user profile.
	- Custom journey plans taking into account trip history and previous choices.
Trip Follower	- The user can indicate when to start and stop his/her trips being monitoring by the system in order to improve personalized results.
Context Awareness	- Real time information about traffic and weather (not at all Living Labs).
User Feedback	- Users can report problems or issues, send feedback about MyWay and about the trip plans.

STAR 2015, 20th May 2015, Glasgow
Next Steps: Phase Two Trial

• Four month trial from September 2015
• Full user evaluation
• Functionality validation using scripted journeys based on subset of scenarios
• Analysis of KPIs, including impact on mobility behaviour
• Broadest functionality, including support for voluntary behaviour change
• Integration of the more innovative modes (e.g. Motit in Catalonia)
• Between 200-600 trial users across all three Living Labs
Impact

MyWay is a smart application aimed at consumers of mobility services who want flexibility and convenience

• It provides users with a more integrated overview of locally available transport modes, giving users the tools to choose innovative modes
• It shows users the best plans by personalised criteria to support sustainable change
• It supports seamliness by reducing user uncertainty for the first and last mile, interchanges, disruption and parking
• It collects anonymisable data on actual behaviour and perceptions of service quality which will benefit public and private stakeholders

The meta-planner approach use of personalisation also provides a platform for targeted travel behaviour change campaigns
• This paper describes the on-going MyWay project, funded under EU FP7
• The methodology combines user research, collaborative design and expert usability evaluation to support a Living Lab approach to field testing
• MyWay’s basic functionality has undergone a pilot trial
• The functionalities included in the Phase One trial are described
• The planned functionalities for the final Phase Two trial are outlined
• MyWay has potential to have real impact in the field of smart mobility by impacting on consumer choice and gently influencing behaviour
• MyWay addresses significant gaps in the provision of holistic information to users and in generating useful data for public stakeholders and transport providers.
THANK YOU!

k.pangbourne@abdn.ac.uk

STAR 2015, 20th May 2015, Glasgow
This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 609023.

The sole responsibility for the content of this publication lies with the authors. It does not necessarily represent the opinion of the European Union. The European Commission is not responsible for any use that may be made from the information contained therein.

Join our LinkedIn Group at MyWay Project

Follow us on twitter at @MyWay_EU

Further Information:
Project coordinator: Marco Boero, SOFTECO SISMAT SRL, Via de Marini, 1-WTC Tower, 16149 Genoa. E-mail: Marco.boero@softech.it